This is an outdated version published on 2020-09-01. Read the most recent version.

Miniaturization by precision micro cutting

Authors

  • M. Azizur Rahman Mechanical and Production Engineering, Ahsanullah University of Science & Technology, Bangladesh
  • Keng Soon Woon Mechanical Engineering, National University of Singapore, Singapore
  • Mustafizur Rahman Mikrotools Pte Ltd, Singapore

Keywords:

Miniaturization, Precision micro cutting, Material behavior, Cutting edge effect, Surface finishing

Abstract

The trend of increasing miniaturization for various industrial applications serves the basic progress of precision micro cutting adopted for wide variety of materials and alloys. Different from conventional metal cutting, the precision micro cutting deals with some important process parameters along with cutting edge geometry, material property, microstructure, and material removal phenomena. Significant research on micro cutting mechanics, an established science in metal cutting, has been conducted to explore the basics of micro manufacturing towards miniaturization. This article, thus, becomes a chronological presentation of the critical analysis of breakthrough research in precision micro cutting process.

References

Arif, M., Rahman, M., & San, W. Y. (2011). Analytical model to determine the critical feed per edge for ductile–brittle transition in milling process of brittle materials. International Journal of Machine Tools and Manufacture, 51(3), 170-181.

Asad, A., Masaki, T., Rahman, M., Lim, H., & Wong, Y. (2007). Tool-based micro-machining. Journal of Materials Processing Technology, 192, 204-211.

Habib, M., Gan, S., & Rahman, M. (2009). Fabrication of complex shape electrodes by localized electrochemical deposition. Journal of Materials Processing Technology, 209(9), 4453-4458.

Jahan, M. P., Lieh, T., San Wong, Y., & Rahman, M. (2011). An experimental investigation into the micro-electrodischarge machining behavior of p-type silicon. The International Journal of Advanced Manufacturing Technology, 57(5-8), 617-637.

Neo, W. K., Kumar, A. S., & Rahman, M. (2012). A review on the current research trends in ductile regime machining. The International Journal of Advanced Manufacturing Technology, 63(5-8), 465-480.

Ng, C. K., Melkote, S. N., Rahman, M., & Kumar, A. S. (2006). Experimental study of micro-and nano-scale cutting of aluminum 7075-T6. International Journal of Machine Tools and Manufacture, 46(9), 929-936.

Perveen, A., Jahan, M., Rahman, M., & Wong, Y. (2012). A study on microgrinding of brittle and difficult-to-cut glasses using on-machine fabricated poly crystalline diamond (PCD) tool. Journal of Materials Processing Technology, 212(3), 580-593.

Rahman, M., Asad, A., Masaki, T., Saleh, T., Wong, Y., & Kumar, A. S. (2010). A multiprocess machine tool for compound micromachining. International Journal of Machine Tools and Manufacture, 50(4), 344-356.

Rahman, M., Asad, A., Masaki, T., Wong, Y., & Lim, H. (2007). Integrated hybrid micro/nano-machining. International Manufacturing Science and Engineering Conference,

Rahman, M., Asad, A., Masaki, T., Wong, Y. S., & Senthil Kumar, A. (2010). Compound micro/nano machining–a tool-based innovative and integrated approach. Key Engineering Materials,

Rahman, M., Kumar, A. S., & Prakash, J. (2001). Micro milling of pure copper. Journal of Materials Processing Technology, 116(1), 39-43.

Rahman, M., Lim, H., Neo, K., Kumar, A. S., Wong, Y., & Li, X. (2007). Tool-based nanofinishing and micromachining. Journal of Materials Processing Technology, 185(1-3), 2-16.

Rahman, M., Rahman, M., Kumar, A. S., Lim, H., & Asad, A. (2003). Fabrication of miniature components using microturning. Proceedings of the Fifth International Conference on Mechanical Engineering, Dhaka,

Rahman, M., Woon, K., Venkatesh, V., & Rahman, M. (2018). Modelling of the combined microstructural and cutting edge effects in ultraprecision machining. CIRP Annals, 67(1), 129-132.

Rahman, M. A., Amrun, M., Rahman, M., & Kumar, A. S. (2017). Investigation of the critical cutting edge radius based on material hardness. The International Journal of Advanced Manufacturing Technology, 88(9-12), 3295-3306.

Rahman, M. A., Rahman, M., & Kumar, A. S. (2017). Modelling of flow stress by correlating the material grain size and chip thickness in ultra-precision machining. International Journal of Machine Tools and Manufacture, 123, 57-75.

Rahman, M. A., Rahman, M., & Kumar, A. S. (2018a). Influence of cutting edge radius on small scale material removal at ultra-precise level. Procedia Cirp, 77, 658-661.

Rahman, M. A., Rahman, M., & Kumar, A. S. (2018b). Material perspective on the evolution of micro-and nano-scale cutting of metal alloys. Journal of Micromanufacturing, 1(2), 97-114.

Rahman, M. A., Rahman, M., Kumar, A. S., & Amrun, M. R. (2018). Effect of cutting edge radius on'burnishing-like'mechanism in micromachining. International Journal of Precision Technology, 8(1), 85-103.

Rahman, M. A., Rahman, M., Kumar, A. S., & Lim, H. (2005). CNC microturning: an application to miniaturization. International Journal of Machine Tools and Manufacture, 45(6), 631-639.

Rahman, M. A., Rahman, M., Mia, M., Asad, A., & Fardin, A. (2019). Manufacturing of Al Alloy Microrods by Micro Cutting in a Micromachining Center. Micromachines (Basel), 10(12). https://doi.org/10.3390/mi10120831

Woon, K., & Rahman, M. (2010). Extrusion-like chip formation mechanism and its role in suppressing void nucleation. CIRP Annals, 59(1), 129-132.

Woon, K. S., Rahman, M., Fang, F. Z., Neo, K. S., & Liu, K. (2008). Investigations of tool edge radius effect in micromachining: A FEM simulation approach. Journal of Materials Processing Technology, 195(1-3), 204-211. https://doi.org/10.1016/j.jmatprotec.2007.04.137

Zaman, M., Kumar, A. S., Rahman, M., & Sreeram, S. (2006). A three-dimensional analytical cutting force model for micro end milling operation. International Journal of Machine Tools and Manufacture, 46(3-4), 353-366.

Downloads

Published

2020-09-01

Versions

How to Cite

Rahman, M. A., Woon, K. S. ., & Rahman, M. (2020). Miniaturization by precision micro cutting. Journal of Production Systems and Manufacturing Science, 1(2), 11. Retrieved from https://www.imperialopen.com/index.php/JPSMS/article/view/48

Issue

Section

Editorials